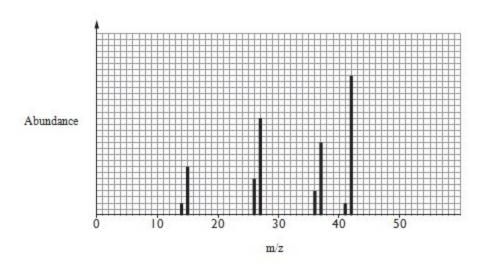
WJEC Chemistry A-level

C3.5: Instrumental Analysis


Practice Questions

England Specification

- 1. (a) Compound **X** is a straight-chain hydrocarbon that consists of 85.7 % carbon by mass.
- (i) Find the **empirical** formula of compound **X**

[3]

(ii) Some peaks from the mass spectrum of **X** are shown below.

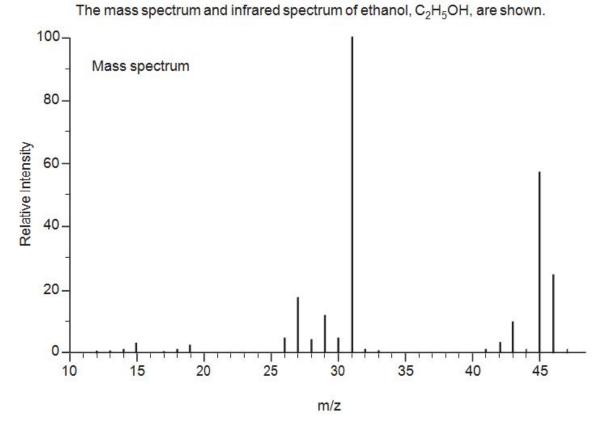
Use the empirical formula and the mass spectrum to find the molecular formula of ${\bf X}$. Show your workings

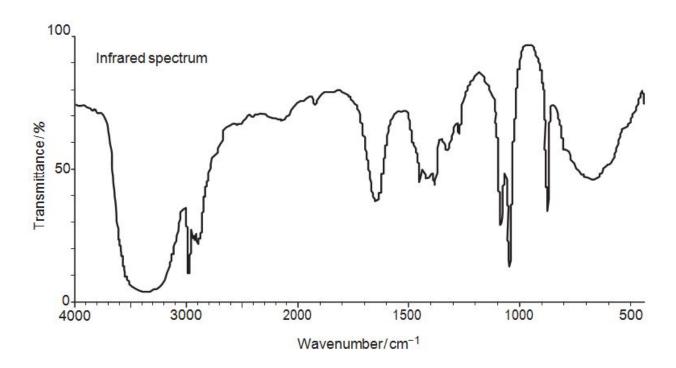
[2]

(iii) Suggest what information the presence of the peak at m/z 15 gives about the structure of **X**.

[1]

(b) Butene, C ₄ H ₈ , is an alkene. isomers of C ₄ H ₈ .	Draw	displayed	formulae	for three	straight-chain [3]
					(Total 9)
2. (a) Propene reacts with hydrogen brom(i) Draw the mechanism for this reaction.	ide to giv	ve 2-bromop	ropane.		
(i) Braw the mechanism for the reason.					[3]


	Explain why the product of this reaction is mainly 2-b	
)	Compound C is a compound of carbon, hydroisotopes, ⁷⁹ Br and ⁸¹ Br, in equal abundance. Us structure of compound C , giving your reasoning	e all the information below to deduce the
	 Compound C contains 29.8% carbon, 4 mass. 	.2% hydrogen and 66.0% bromine by
	 The mass spectrum of compound C conta peaks at 120 and 122. 	ains peaks at m/z of 15, 41 and a pair of
	 The infrared spectrum of compound C has 3030 cm⁻¹. 	absorptions at 550 cm ⁻¹ , 1630 cm ⁻¹ and
	Compound C is a Z-isomer.	


(Total 12)

3.	(a)	An acid F was known to be one of the following.						
			CH ₃ CH ₂ HC = CHCO ₂	Н	Acid 1	$M_{\rm r} = 100$		
			HO2CCH2CH2CO2H		Acid 2	$M_{\rm r} = 118$		
		A sample of 1.20 g of acid ${\bf F}$ was burned in excess oxygen. 1.79 g of carbon dioxide was formed.						
		(i) Calculate the mass of carbon present in the sample of acid F .					[1]	
						Mass of carbon =	a	
							9	
			hydrogen in the sample is one of oxygen in the sample	_	Assuming th	nat the rest of the samp	ole is oxygen,	
							[1]	
			Mass of oxygen =				g	
(iii) Us	se yo	ur ans	swers to parts (i) and (ii) to	find the e	empirical for	mula of acid F .		
							[2]	
			Empirical formula	1				

(iv) State the identity of acid F . Show clearly how you reached this conclusion.	
	[1]
(v) Describe a chemical test that would distinguish between Acid 1 and Acid 2. You should include the expected results	
	[1]
(vi) Draw the structural formula of the alcohol that can be oxidised to form Acid 2.	
	[1]

(b) Spectra give much information about the structure of organic compounds.

(i) V	Vhat c	an be deduced by the presence of the peak at m/z 46 in the mass spectrum	?
			[1]
(ii) '	What o	can be deduced by the presence of the peak at m/z 15 in the mass spectrum	?
			[1]
		can be deduced by the presence of an absorption peak at 3100 to 3500 cm- pectrum?	1 in the
			[1]
(c)	Ethen	e can be converted into ethanol and ethanol can be converted into ethene.	
For	each	conversion, state the reagent(s) used and the conditions needed.	
			[4]
eth	ene to	ethanol	
eth	anol to	o ethene	
			(Total 14)
4.	This	question concerns isomers with molecular formula $C_5H_{10}O_2$.	
	(a)	Isomers P, Q, R and S all react with aqueous sodium carbonate to produce dioxide.	carbon
		Isomer P is a straight-chain compound.	
		Isomer Q contains a chiral carbon centre.	
		Isomer R has only two peaks in its NMR spectrum, both of which are singlets.	
		Draw the displayed formulae for all four isomers.	[4]

compounds **X** and **Y** in the presence of concentrated sulfuric acid. Compound **X** has an absorption in its infrared spectrum at 1750 cm⁻¹ and a broad absorption around 3000 cm-1. Compound **Y** can be formed directly from ethanal. (i)Use all the information given to name compounds X and Y, giving your reasoning. Draw the displayed formula for isomer **T**. [4] QWC [2] (ii) I. State the reagent needed to form compound **Y** from ethanal [1] II. State the role of sulfuric acid in the formation of T [1] (c) Isomer U has the structural formula shown below. O || CH₃—CH₂—0—CH₂—C—CH₃ List the peaks which would be found in the NMR spectrum of isomer U. Identify which protons are responsible for each peak, giving the approximate chemical shift (ppm) and the splitting of the peak. [4] (d) Explain which one of isomers **P**, **T** and **U** would have the highest boiling temperature. [3] QWC [1] (Total 20)

(b) Isomer T is a neutral, sweet-smelling compound and is formed by the reaction between